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ABSTRACT

This paper addresses the problem of single microphone speech en-
hancement in noisy environments. Common short-time noise re-
duction techniques proposed in the art are expressed as a spectral
gain depending on thea priori SNR. In the well-known decision-
directed approach, thea priori SNR depends on the speech spec-
trum estimation in the previous frame. As a consequence the gain
function matches the previous frame rather than the current one
which degrades the noise reduction performance. We propose a
new method called Two-Step Noise Reduction (TSNR) technique
which solves this problem while maintaining the benefits of the
decision-directed approach. This method is analyzed and results
in voice communication and speech recognition context are given.

1. INTRODUCTION

The problem of enhancing speech degraded by additive noise,
when only the noisy speech is available, has been widely studied
in the past and is still an active field of research. Noise reduction
is useful in many applications such as voice communication and
automatic speech recognition where efficient noise reduction tech-
niques are required. Scalart and Vieira Filho presented in [1] an
unified view of the main single microphone noise reduction tech-
niques where the noise reduction process relies on the estimation
of a short-time suppression gain which is a function of thea priori
Signal-to-Noise Ratio (SNR) and/or thea posteriori SNR. They
also emphasize the interest of estimating thea priori SNR thanks
to the decision-directed approach proposed by Ephraim and Malah
in [2]. Capṕe analyzed the behavior of this estimator in [3] and
demonstrated that thea priori SNR follows the shape of thea pos-
teriori SNR with a delay of one frame. This bias is due to the use
of the speech spectrum estimated at the previous frame to compute
the currenta priori SNR. In fact, since the gain depends on thea
priori SNR, it does not match anymore the current frame and thus
it degrades the performance of the noise suppression system. We
propose a new method, called Two-Step Noise Reduction (TSNR)
technique, to refine the estimation of thea priori SNR which sup-
presses these drawbacks while maintaining the advantages of the
decision-directed approach, like the highly reduced musical noise
effect. An analysis of the TSNR technique behavior is proposed
and some results are given in the context of voice communication
and speech recognition using one of the databases that were used
for the competitive selection of the ETSI/STQ/AURORA/WI008
standardization [4].

2. CLASSICAL NOISE REDUCTION RULE

In the classical additive noise model, the noisy speech is given by
x(t) = s(t) + b(t) wheres(t) andb(t) denote the speech and the
noise signal, respectively. LetS(p, ωk), B(p, ωk) andX(p, ωk)
designate theωk spectral component of short-time framep of the
speechs(t), the noiseb(t) and the noisy speechx(t), respectively.
The quasi-stationarity of the speech is assumed over the duration
of the analysis frame. The noise reduction process consists in the
application of a spectral gainG(p, ωk) to each short-time spec-
trum valueX(p, ωk). In practice, the spectral gain requires the
evaluation of two parameters. Thea posteriori SNR is the first
parameter given by

SNRpost(p, ωk) =
|X(p, ωk)|2

E{|B(p, ωk)|2}
(1)

whereE is the expectation operator. Thea priori SNR, which is
the second parameter of the noise suppression rule is expressed as

SNRprio(p, ωk) =
E{|S(p, ωk)|2}

E{|B(p, ωk)|2}
(2)

and requires the unknown information of the speech spectrum. Let
us define a new parameter, theinstantaneous SNR,

SNRinst(p, ωk) = SNRpost(p, ωk) − 1. (3)

This parameter can be interpreted as an estimation of the locala
priori SNR in a way equivalent to the spectral subtraction. So,
to evaluate the accuracy of thea priori SNR estimator, it is bet-
ter to compare it to theinstantaneous SNR instead of thea pos-
teriori SNR . Both the gain function and thea priori SNR, de-
scribed in the literature as functions of thea posteriori SNR, can
be easily redefined as functions of theinstantaneous SNR. Conse-
quently, in the following we will only refer to theinstantaneous
SNR and to thea priori SNR. In practical implementations of
speech enhancement systems, the power spectrum density of the
speech|S(p, ωk)|2 and the noise|B(p, ωk)|2 are unknown as only
the noisy speech is available. Then, both theinstantaneous SNR
and thea priori SNR have to be estimated. The noise power spec-
tral density is estimated during speech pauses using the classical
recursive relation

γ̂bb(p, ωk) = λγ̂bb(p − 1, ωk) + (1 − λ)|X(p, ωk)|2 (4)

where0 < λ < 1 is the smoothing factor. Then the two estimated
SNRs can be computed as follow

ˆSNRinst(p, ωk) =
|X(p, ωk)|2

γ̂bb(p, ωk)
− 1 (5)



and

ˆSNRprio(p, ωk) = β
|Ŝ(p − 1, ωk)|2

γ̂bb(p, ωk)

+(1 − β)P [ ˆSNRinst(p, ωk)] (6)

whereP denotes the half-wave rectification and̂S(p − 1, ωk) is
the estimated speech spectrum at previous frame. The estimator
of thea priori SNR described by (6) corresponds to the so-called
decision-directed approach [2] which has a behavior controlled by
the parameterβ (typically equal to 0.98). The multiplicative gain
functionG(p, ωk) is obtained by

G(p, ωk) = f( ˆSNRprio(p, ωk), ˆSNRinst(p, ωk)) (7)

and the resulting speech spectrum is estimated as follows

Ŝ(p, ωk) = G(p, ωk)X(p, ωk). (8)

The functionf depends ona priori SNR and/orinstantaneous
SNR. Then the analysis proposed below is valid with the differ-
ent gain functions proposed in the literature (e.g. amplitude and
power spectral subtraction, Wiener filtering, etc.) [1, 2, 5].

3. TWO-STEP NOISE REDUCTION TECHNIQUE (TSNR)

3.1. Principle of the two-step procedure

In order to enhance the performance of the noise reduction pro-
cess, we propose to estimate the multiplicative gainG(p, ωk) in a
two-step procedure. This method will be referred to as the Two-
Step Noise Reduction (TSNR) algorithm in the following. In the
first step we compute the multiplicative gainGdd(p, ωk) function
of the parameter ˆSNRprio dd(p, ωk) and/or ˆSNRinst(p, ωk) as
described in section 2. This method will be referred to as the
decision-directed (DD) algorithm. The multiplicative gain ob-
tained in the first step will then be used to refine thea priori SNR
estimation using the following equation

ˆSNRprio 2step(p, ωk) =
|Gdd(p, ωk)X(p, ωk)|2

γ̂bb(p, ωk)
. (9)

The numerator of (9) gives a more accurate estimation of the power
spectrum density of speech.

Finally, we compute the multiplicative gain

G2step(p, ωk) = h( ˆSNRprio 2step(p, ωk), ˆSNRinst(p, ωk))
(10)

which is used to enhance the noisy speech

Ŝ(p, ωk) = G2step(p, ωk)X(p, ωk). (11)

Note thath may be different from the functionf defined in (7).
Furthermore, this approach can be extended to multiple steps in an
iterative procedure, however we observed that the major improve-
ment is due to the first two steps.

3.2. Analysis of the two-step procedure

Figure 1 shows the behavior of the DD algorithm and the TSNR
algorithm. We consider the case of speech corrupted by additive
car noise at a 12 dB global SNR. Only the estimates at frequency
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Fig. 1. SNR evolution over short-time frames (f = 372 Hz).
Solid line: instantaneous SNR; dashed line:a priori SNR of the
DD algorithm; Bold line:a priori SNR of the TSNR algorithm.

372 Hz are displayed. Note that this case illustrates the typical be-
havior of the represented SNR estimators. The first 23 short-time
frames consist in noise and the last 27 short-time frames consist
in speech including a transient between noise and speech around
frame 23.

The solid curve represents the time varyinginstantaneous SNR.
The dashed curve and the bold curve represent thea priori SNR
evolution for the DD algorithm and for the TSNR algorithm, re-
spectively. Notice that in this experiment, we have chosen the
multiplicative Wiener gain, without loss of generality, to compute
both gainsGdd(p, ωk) andG2step(p, ωk). Thus the generic gain
expression is

Ggeneric(p, ωk) =
ˆSNRprio generic(p, ωk)

1 + ˆSNRprio generic(p, ωk)
(12)

where the subscriptgeneric must be replaced bydd and2step,
respectively. We can emphasize two effects of the DD algorithm
which have been interpreted by Cappé in [3]:

• When theinstantaneous SNR is much larger than 0 dB, the
ˆSNRprio dd(p, ωk) corresponds to a delayed version of the

instantaneous SNR. This delay is equal to the frame duration.

• When theinstantaneous SNR is lower or close to 0 dB, the
ˆSNRprio dd(p, ωk) corresponds to a highly smoothed and

delayed version of theinstantaneous SNR. Thus the variance
of thea priori SNR is reduced compared to theinstantaneous
SNR. The direct consequence for the enhanced speech is the
reduction of the musical noise effect.

The delay introduced by the DD algorithm is a drawback espe-
cially when the speech signal is non-stationary like during onset or
ending of speech. Furthermore, this delay introduces a bias in the
gain estimation and thus limits the noise reduction performance.
The analysis proposed below shows that the TSNR algorithm is
able to suppress the delay while maintaining the benefits of the
DD algorithm.

The conclusions of Cappé [3] concerning the DD algorithm di-
rectly apply to the first step of the TSNR algorithm and further-
more can be used to analyze the second step:



• When theinstantaneous SNR is much larger than 0 dB, we
can make from (6) the following approximation [3]

ˆSNRprio dd(p, ωk) ≈ β ˆSNRinst(p − 1, ωk). (13)

So, the multiplicative gain obtained after the first step can be
approximated by

Gdd(p, ωk) ≈
β ˆSNRinst(p − 1, ωk)

1 + β ˆSNRinst(p − 1, ωk)
. (14)

Furthermore, by considering thatˆSNRinst(p − 1, ωk) ≫ 1
and thatβ is very close to 1, (14) reduces toGdd(p, ωk) ≈ 1.
If we introduce this approximation in equation (9), this leads
to

ˆSNRprio 2step(p, ωk) ≈
|X(p, ωk)|2

γ̂bb(p, ωk)
. (15)

Finally, by applying ˆSNRinst(p, ωk) ≫ 1 in (5), the fol-
lowing relation can be derived

ˆSNRprio 2step(p, ωk) ≈ ˆSNRinst(p, ωk). (16)

This result shows that the TSNR algorithm succeeds in sup-
pressing the delay introduced by the DD algorithm. This re-
sult is illustrated by Fig. 1. When the signal is composed of
a mixture of speech and noise (right-part of Fig. 1), the bold
curve is superimposed on the solid curve, then the TSNR
algorithm efficiently suppresses the delay introduced by the
DD algorithm and its negative consequences on the multi-
plicative gain.

• When theinstantaneous SNR is lower or close to 0 dB,
the ˆSNRprio 2step(p, ωk) is further reduced compared to

ˆSNRprio dd(p, ωk) which is equivalent to further reduce
the noise when speech components are absent, even during
speech activity. This is illustrated in left-part of Fig. 1. Fur-
thermore, it appears that the second step helps in reducing
the delay introduced by the smoothing effect even when the
SNR is small while keeping the smoothing effect provided
by the DD algorithm.

To summarize, the TSNR algorithm improves the performance of
the noise reduction since the gain is well adapted to the current
frame to enhance, whatever theinstantaneous SNR may be. Notice
that when more than two steps are used, the behavior is similar to
the TSNR algorithm but without noticeable improvement.

4. EXPERIMENTAL RESULTS

4.1. Voice communication

Figure 2 shows the efficiency of the TSNR algorithm when the
noisy signal is mainly noise, like during speech pauses or during
speech activity in frequency areas with no speech component. The
solid curve is the amplitude of noise without processing. The bold
curve corresponds to the residual noise with the TSNR algorithm.
Compared to the dashed curve which corresponds to the residual
noise delivered by the DD algorithm, the TSNR algorithm exhibits
an extra reduction of 10 dB on average. This is an interesting prop-
erty since spectral valleys between speech harmonics are well en-
hanced and more generally the level of the residual musical noise
is reduced.
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Fig. 2. Amplitude of the signal in smallinstantaneous SNR areas.
Solid line: noise; dashed line: residual noise of DD algorithm;
bold line: residual noise of TSNR algorithm

In Fig. 3 a silence to noise transient is isolated in order to show
the improvement obtained by suppressing the bias in thea pri-
ori SNR estimation. The solid curve is the amplitude of clean
speech and will be considered as the reference for the two other
curves. The dashed curve corresponds to the enhanced speech us-
ing the DD algorithm. The bold curve corresponds to the enhanced
speech using the TSNR algorithm. It can be observed that there is
a significant improvement of about 1 to 5 dB on most of the har-
monics. This property is mainly due to the ability of the TSNR
algorithm to update thea priori SNR faster than the DD algorithm.
For each frequency component, the bias of the multiplicative gain
is removed and the non-stationarity of the speech signal can be
immediately tracked. Note that this phenomenon occurs not only
for onset and ending of speech, but also during speech activity in
frequency areas where the SNR exhibits abrupt changes (e.g. un-
voiced to voiced transitions, etc.).
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Fig. 3. Amplitude of the signal in highinstantaneous SNR areas.
Solid line: clean speech; dashed line: enhanced speech of DD
algorithm; bold line: enhanced speech of TSNR algorithm



4.2. Speech recognition

The TSNR algorithm was included in the ETSI standard Dis-
tributed Speech Recognition (DSR) advanced front-end, ETSI 202
050 version 1.1.1 (ES202) [6]. In order to quantify the benefits
provided by the TSNR algorithm, speech recognition experiments
were carried out with ES202 and with modified version of ES202
where the second step of the TSNR algorithm was removed, which
corresponds to the DD algorithm (ES202dd).

Notice that in this ES202 front-end, to compute both gains
Gdd(p, ωk) andG2step(p, ωk), we have chosen the following gain

Ggeneric(p, ωk) =

√

ˆSNRprio generic(p, ωk)

1 +

√

ˆSNRprio generic(p, ωk)
(17)

where the subscriptgeneric must be replaced bydd and2step,
respectively. This gain, which is smoother than the Wiener gain, is
well adapted to speech recognition applications.

The ES202 and ES202dd front-ends were evaluated on the
SpeechDatCar German of the Aurora 3 databases. Aurora 3 is
a set of multi-language SpeechDat-Car databases recorded in-car
under different driving conditions with close-talking and hands-
free microphones.

Three train and test configurations were defined: the well-
matched condition (WM), the medium mismatched condition
(MM) and the highly mismatched condition (HM). In the WM
case, 70% of the entire data is used for training and 30% for test-
ing. The training set contains all the variability that appears in the
test set. In the MM case, only far microphone data is used for
both training and testing. For the HM case, training data consists
of close microphone recordings only while testing is done on far
microphone data.

Recognition experiments were carried out using perfect end-
pointing. Aurora 3 databases are connected digit tasks. Hence
different types of error may occur: substitution error (one word
uttered, another word recognized), deletion error (one word ut-
tered, no word recognized) and insertion error (no word uttered,
one word recognized). Most of the insertion errors are due to the
silence/noise between the words.

We tested the ES202 and ES202dd front-ends by using the back-
end configuration as defined by the ETSI Aurora group [4]. The
digit models have 16 states with 3 Gaussians per state. The silence
model has 3 states with 6 Gaussians per state. Also, a one-state
short pause model is used and is tied with the middle state of the
silence model.

Figure 4 shows the relative degradation for deletion, substitu-
tion and insertion errors when the second step of the TSNR algo-
rithm is removed from the ES202 front-end. For the three types
of test (WM,MM and HM), it appears that the TSNR algorithm
mainly reduces the substitution and insertion errors. The reduction
of insertion errors when applying TSNR algorithm is explained by
its benefits in smallinstantaneous SNR (cf. Fig. 1 and Fig. 2).
Indeed, less noise between words results in less insertion errors.

As already mentioned, SNR for a given frequency exhibits
abrupt changes (e.g. unvoiced to voiced transitions, etc.) during
speech activity. Thus the better behavior of the TSNR algorithm
for transients results in an improved noise reduction during speech
activity (cf. Fig. 1 and Fig. 3). This explains the reduction of the
substitution errors.
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Fig. 4. Relative degradation when the second step of the TSNR
algorithm is removed in ES202 front-end.

5. CONCLUSION

In this paper, we proposed a new noise reduction technique based
on the estimation of thea priori SNR in two steps. Thea priori
SNR estimated in the first step provides interesting properties but
suffers from a delay of one frame which is removed by the second
step of the TSNR algorithm. So, this technique has the ability to
immediately track the non-stationarity of the speech signal with-
out introducing musical noise effects which is illustrated in the
context of voice communication. In addition, in automatic speech
recognition application, the TSNR algorithm exhibits a significant
reduction of substitution and insertion errors leading to a substan-
tial relative recognition performance improvement.
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