A METHODOLOGY FOR EVALUATING THE PRECISION OF FIXED-POINT SYSTEMS
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ABSTRACT

The minimization of cost, power consumption and time-to-market
of DSP applications requires the development of methodologies
for the automatic implementation of floating-point algorithms in
fixed-point architectures. In this paper, a new methodology for
evaluating the quality of an implementation through the automatic
determination of the Signal to Quantization Noise Ratio (SQNR)
is presented. The modelization of the system at the quantization
noise level and the expression of the output noise power is detailed
for linear systems. Then, the different phases of the methodology
are explained and the ability of our approach for computing the
SQNR efficiently is shown through examples.

1. INTRODUCTION

The efficient implementation of digital signal processing (DSP)
algorithms in embedded systems requires the use of fixed-point
arithmetic in order to satisfy the cost and power consumption con-
straints of these applications. The manual transformation of floating-
point data into fixed-point data is a time-consuming and error prone
task. Moreover, the reduction of the time-to-market of the applica-
tions needs to use high level development tools which allow the au-
tomation of some tasks. The manual conversion to the fixed-point
level hinders the reduction of the development time [1]. Thus,
methodologies for the automatic transformation of floating-point
data into fixed-point data have been proposed [2, 3].

The efficient implementation of algorithms in hardware or soft-
ware architectures requires to evaluate the precision of the imple-
mentation. The most common used criteria for evaluating the pre-
cision is the Signal to Quantization Noise Ratio (SQNR) which
is the ratio between the signal power and the quantization noise
power. Most of the available methodologies for computing the
SQNR are bhased on a bit true simulation of the fixed-point algo-
rithm [2, 3, 4, 5]. Thus, C++ classes for emulating the fixed-point
mechanisms have been developed as in SystemC [5]. This tech-
nique suffers from a major drawback which is the time required
for the simulations [4]. They are made on floating-point machines
and the extra-code used for emulating the fixed-point mechanisms
of the operations increases the simulation time between one and
two orders of magnitude compared to a traditional simulation with
floating-point data types [3]. Moreover, for obtaining an accu-
rate estimation of the noise statistic parameters, a great number of
samples must be taken for the simulation. These long simulation
times become a severe limitation when these methods are used in
the process of data word-length optimization where multiple sim-
ulations are needed for exploring the design-space of the different
data word-lengths [2]. Different techniques [2, 3, 4] have been
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investigated for reducing this simulation time.

An alternative to the simulation based method can be an an-
alytical approach which determines the expression of the noise
power at the output of a system according to the statistical pa-
rameters of the different noise sources. For this approach, two
advantages can be underlined. Firstly, this method gives an ana-
Iytic expression of the SQNR and thus provides more information
about the noise behaviour in the system than a simulation based
method which only gives the numerical value of the SQNR. Sec-
ondly, the requisite execution time for evaluating the noise power
is definitely lower, especially for the process of data word-length
optimization in hardware design. Indeed, the determination of the
SQNR expression is done only once.

Analytical expressions of the SQNR have been formulated for
some particular DSP applications as in [6]. In [7], an analytical ap-
proach based on the propagation in the system Signal Flow Graph
(SFG) of the noise statistical parameters is proposed. This method
suffers from two major drawbacks. The noise models are not real-
istic and the method is limited to non-recursive structures.

In this paper a new method for the automatic SQNR evalua-
tion based on an analytical approach is proposed. It uses a realistic
noise model which takes into account the different quantification
laws (rounding and truncation). Moreover, this method allows to
compute the SQNR in non-recursive structures and in linear recur-
sive structures. The scope of this paper is limited to linear systems.
In this case, our approach is based on the automatic computation
of the transfer function of the system from its SFG representation.
After a presentation of the different noise models in section 2, the
theoretical concepts of the method are detailed in section 3 and the
expression of the output noise power is defined. Then, the tech-
niques used for implementing this method are briefly explained in
section 4. Finally, the ability of our approach for computing the
SQNR efficiently is shown through some examples in section 5.

2. NOISE MODELS

The use of fixed-point arithmetic introduces an unavoidable quan-
tization error when a signal is quantified. In this section, the differ-
ent available quantization noise models and the modelization of the
propagation of these noises through the operators are presented.

2.1. Quantization noise models

A common used model for the continuous-amplitude signal quan-
tization, has been proposed by Widrow [8]. The quantization of a
signal x is modeled by the sum of this signal and a random variable
b. This additive noise b is a stationary and uniformly distributed



white noise that is uncorrelated with the signal = and the other
quantization noises. This model has been extended for modeling
the computation noise in a system resulting from the elimination of
some bits during a format conversion (cast operation). In [9], the
authors have demonstrated that the model presented above can be
used if the dynamic range of the signal is sufficiently greater than
the quantum step size and if the bandwidth of the input is large
enough. Moreover, the expressions of the first and second-order
moments of the noise have been refined. In [10], the number of
bits eliminated during a cast operation has been taken into account
for expressing the first and second-order moments of the quantiza-
tion noise.

2.2. Propagation noise models

The propagation noise model of an operator defines the expression
of the output noise from the input noises and signals. An operator
with two inputs X and Y and one output Z is under consideration.
Each input and output is made up of a signal s and a quantization
noise b. The expressions of the output noise b. of an adder and a
multiplier are

b. = by, + byss + bab,

(adder)
(multiplier)

@

For the multiplier, the term b, b, represents the product of two
noises which is much smaller than the two other terms, then it can
be neglected in the following. As well, for the multiplication of X
by a constant C, the expression of the output noise is b, C’' + A¢ s,
where C' is the value of the quantified constant and A¢ a bias
corresponding to the difference between C’ and C.

3. THEORETICAL APPROACH

3.1. Output noise expression

A linear time-invariant system made up of V. inputs z;(n) and
one output y(n) is considered. For multi-outputs systems our
method is repeated for each output. Let H;(z) be the partial trans-
fer function between the output Y (z) and each input X (z), and
hj(n) be the impulse response associated with H;(z). The ex-
pression of the output y(n) is equal to

Ne—1

ym) = 3= hy(n) < 25(n) @

The fixed-point version of this system is detailed thereafter.
Let £;(n) be the j** quantified system input and f{\j(z) be the
transfer function between the output Y'(z) and the input X;(2)
with quantified coefficients. The use of fixed-point arithmetic gives
rise to three kinds of source of error which are due to the quantiza-
tion of the system inputs, the quantization of the coefficients and
the error generated when some bits are eliminated during a cast
operation.

Let b,; be the quantization noise associated with each quanti-
fied system input z; (n) such as defined in equation 3. Let b.; be
the output noise due to the propagation in the system of the input
noise b ;

7j(n) = x;(n) + be; (n) ®

Let AH,(z) be the transfer function corresponding to the dif-

ference between the quantified transfer function f{\] (z) and the real
transfer function H;(z)

AHj(z) = Hj(z) — Hj(2) 4)

The elimination of some bits during a cast operation in the

system leads to the generation of a quantization noise by;. Let

bgi be the output noise due to the propagation in the system of

the generated noise b;;. The transfer function between the system

output and the noise source by; is Hy;(z). Let by be the sum of the
N,y noise sources bgy; generated in the system

Ng—1

bo(n) = D~ hys(m) xbyi() ©

The expression of the fixed-point version of the system output
3(n) is equal to

Ne—1

B(n) = 3 hy(n) « 55(n) + by(n) ®)

By introducing the equations 3, 4 and 5 in equation 6, the ex-
pression of 3(n) becomes

Ne—1

g(n) = Z (hj(n) + Ahj(n)) * (z;(n) + be;(n)) + by(n)

j=0
(M
As explained in section 2.2, the term Ah;(n) * b, involves
the multiplications of noise terms and thus, it can be neglected in
regard of the other terms. Then, the error b, corresponding to the
difference between the fixed-point and the floating-point version
of the system output is equal to

by = g(n) — y(n) = bg(n) + bu(n) ®)
with
bg(n) = by(n) + be(n) ©)

be(n) = 3 bei(n) = D hi(m) xb;(n)  (10)

and

Ne—1 Ne—1

by (n) = Z byj(n) = Z Ahj(n) *zj(n)  (11)

A representation of the noise model of the system is given in
figure 1. This noise model is a generalization of the one proposed
in [6].

3.2, Statistical parametersof b,

The expression of the statistical parameters of b.; and bg; are iden-
tical. Indeed, these noises represent the output of a linear subsys-
tem excited by a white noise (b, or by;) as defined in section 2.1.
For simplicity, let b; be the output of this subsystem, b’; the input
and H; (z) its transfer function

bj(n) = b (n) * hj(n) (12)



Fig. 1. Representation of the linear system with the noise sources

The noise b;- is a white noise with a mean p, and a variance
J
oy, . These statistical parameters are computed from the models

présented in [8] and [10]. From the theory of linear systems, the
second-order moment of the output noise b; (n) is equal to

2
Oy

: / CH )P (13)

BE®?) = (uy H;(@)
®) = (o Hy () + 32

The first term of this expression represents the mean of b, and
the second term its variance.

From equations 9 and 5, the noise b, is the sum of V. + N, —2
random variables b;. From the noise proprieties presented in sec-
tion 2.1, each noise source b’ is not correlated with any signal or
noise source. Thus, the output b; of the linear system h; excited by
the noise b will not be correlated with any signal or noise source.
The expression of the first and second-order moments of b, are
equal to

No—1 Ny—1

pog = Bb)) = Y oy + D vy, (14)
j=0 i=0

No—1 Ng—1

5) = Z 0';;)&]. + Z Jggi +u§q (15)
j=0 i=0

3.3. Statistical parametersof by,

The expression of the output error by,; due to the quantization of
the coefficients of H;(z) is defined through equation 11. Each sys-
tem input z; is considered to be a stationary and ergodic random
variable. The second-order moment of b; is obtained from the
spectral density ¢. ., of the input system z;

B0 = 1 [ b

By following the same approach, the cross-correlation between
two noises by, and by, can be obtained from the mutual spectral
density ¢, between the system inputs z; and x

() [aH () “do (16)

/ G yen (7Y AH; (7) A Hi (™7 )
o (17)

From equation 11, the noise b, is the sum of N. — 1 random
variables. Thus, the expression of the first and second-order mo-
ments are equal to

E(by;bp,,) =

Ne—1

D ey AH;(€7°) (18)

j=0

o, = E(br) =

Ne—1 Ne—1Ne—1

Eby) = > Ei,)+ Y. Z E(babr,)  (19)
Jj=0 j=0 k=0
k#j

The different terms of this expression are computed from equa-
tions 16 and 17 and require the knowledge of the spectral density
¢z;z; Of each input system and the mutual spectral density ¢,
between all the system inputs. All the statistical parameters asso-
ciated with the inputs x; are specified by the user.

3.4. Output noise power

The output noise power Py, corresponds to the second-order mo-
ment of b,. From equation 8 and the quantization noise proprieties,
the expression of the second-order moment of b, is

Py, = B(by) = B(07) + E(b) + 2, v, (20)
The different terms of this expression are computed from the
equations 14, 15, 18 and 19.

4. SONR COMPUTATION METHODOLOGY

We have developed a new methodology to compute the SQNR at
the output of an application by using an analytical method based
on the theoretical approach presented in section 3. This analyti-
cal method uses as input, an application representation based on
a Signal Flow Graph (SFG) where all the fixed-point formats and
parameters (quantification mode . ..) are defined. In order to be
independent of the specification language of the application, the
tool is split into two parts, a front-end and a back-end. The front-
end transforms the original application representation in a unique
intermediate representation called G corresponding to the appli-
cation SFG which specifies the behaviour of the algorithm at the
fixed-point level. At present, the front-end of a high level synthesis
tool is used for generating the application SFG G;. The back-end
determines the SQNR according to the analytical approach. It con-
sists of several successive transformations (74 to Ts) of the SFG,
described in the following sections.

4.1. Back-end description

The goal of the transformation 77 is to represent the application at
the quantization noise level through the graph G,,. The aim of the
first stage of 77 is to detect and to include in the graph the 3 types
of noise source defined in the section 3.1. Then, each operator is
replaced by its noise propagation model as defined in section 2.2.

The goal of the transformation 7% is to determine the transfer
functions of the system. These transfer functions are computed



with the Z transform from the linear functions which define the
system. They are built by traversing the graph from the inputs to
the output. But this technique is unusable if cycles are present
in the graph as in our case when recursive structures are consid-
ered. Consequently, the use of this technique requires first of all,
to transform this graph in several directed acyclic graphs (DAG).
The different stages of the transformation 7> are presented below.

The goal of the transformation T5; is to transform the graph
G'sn into several DAG Gy, if G, contains circuits. After a fast
circuit detection algorithm all the circuits are enumerated. Then,
each circuit is properly dismantled at the last common points of
the circuit and the paths between any point of this circuit and the
system output node.

The aim of the transformation T is to build the graph Ge,
from the different DAG G. The graph G, is a weighted and
directed graph which specifies the system with a set of linear func-
tions. The linear function associated with each DAG is obtained
by a depth-first traversal of the DAG with a post-order recursive
algorithm.

The goal of the transformation T3 is to compute the weighted
and directed graph G i; which specifies the application with a set
of intermediate transfer functions. After a set of variable substitu-
tions, the transfer function of a subsystem is computed from the Z
transform of the linear function associated with this subsystem.

The aim of the transformation 754 is to build the weighted
tree Ag which specifies the algorithm with a set of global transfer
functions between the output and each input of the system. Ay
represents the modelization of the system given at the figure 1.

The transformation T computes the SQNR from the output
signal power and the output quantization noise power. This one is
computed from the approach detailed in section 3 after the evalu-
ation of the frequency responses of the different subsystems from
their transfer functions. The output signal power is specified by the
user or is computed from the transfer functions of the system and
the parameters of the input signals according to the same method.

5. RESULTS

The ability of our method for computing the SQNR has been suc-
cessfully verified on several classical DSP applications such as FIR
and IIR filters and the FFT algorithm. Indeed, the transfer func-
tions obtained after the transformation T are exact. The accuracy
of our estimation has been analyzed by computing the relative er-
ror between the estimation of the output noise power obtained with
a bit true simulation and with our method. Experiments have been
achieved with different alternatives for the quantization mode, the
scaling strategy and the data word-length. The results obtained
with the two kinds of estimation are very closed. The relative
error between these two estimations is included between 0.29%
and 8.2% for different implementations of a second-order IR fil-
ter and smaller than 1.5% for a 16 taps FIR filter. Two different
reasons can explain the difference between these two estimations.
First, the accuracy of the estimation based on simulation depends
on the number of samples used. Secondly, for our method, a slight
error can be present due to the assumptions made on the noise
model. Thus, the accuracy of our methodology is sufficient enough
to evaluate the precision of a fixed-point implementation.

The execution time of the different parts of the tool has been
measured. The global SQNR computation times for a fourth or-
der cascaded IIR filter (IIR 4) and 256 taps FIR filter (FIR 256)

are smaller than 1 second. Most of the time is consumed by the
transformation 7> and especially by the circuit and path enumer-
ation procedure. The execution time of the transformation T is
0.65s for a IIR 4 and 0.86s for a FIR 256. These results show
the efficiency of our approach on SFG with multiple cycles and
on acyclic SFG with a great number of nodes. These results are
smaller than those obtained with a simulation based method. In-
deed, the global SQNR computation time for a second-order IIR
filter simulated with the MATLAB’s Fixed-Point Toolbox is around
34s for 100000 input samples.

6. CONCLUSION

A new methodology for computing the output SQNR of an appli-
cation based on an analytical approach has been presented. More
precisely, the modelization of the system at the quantization noise
level and the expression of the output noise power have been de-
tailed for linear systems. For non-recursive and non-linear systems
a method based on the propagation of the statistical parameters of
the noise through the SFG of the system is used.

This method provides a significant improvement compared to
the simulation based methods for evaluating the precision of most
of the DSP applications. It allows a more efficient design-space
exploration for hardware (HW) and software (SW) implementa-
tion. In SW implementation, the execution time overhead due to
the cast operations is minimized as long as the precision constraint
is fulfilled. In HW implementation, the time required for minimiz-
ing the data word-length is considerably lower with our method.
After the determination of the SQNR analytical expression, the
word-lengths of the data are obtained by minimizing the size of
the chip as long as the SQNR is greater than the desired SQNR.
Moreover, supplementary constraints like the maximum deviation
of the frequency response in the case of linear filters can be added.
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