System-Level Modelling for Reconfigurable SoCs

|. Benkermi, A. Benkhelifd, D. Chillet, S. Pillement, J.C. Prévotét F. Verdief
*ENSSAT — Université de Rennes |,
IRISA, 6, rue de Kerampont - 22300 Lannion - France
fETIS — UMR 8051 — Université de Cergy-Pontoise,
ENSEA, 6, Avenue du Ponceau - 95014 Cergy-Pontoise - France

Abstract— The integration of dynamically reconfigurable mod- In this context, the utilization of an RTOS (Real Time
ules into systems-on-chip ensures a certain degree of flexibility. In Operating System) is more and more required to furnish
fact, it allows systems-on-chip to adapt to variable computation services such as communications, memory management, task

loads, due to the beginning of new tasks or to data dependent . . .
processings, for example. In order to get the most advantages ;cheduhng and placement. These services have to be fulfille

of these reconfigurable modules, the operating system mustin real time according to the application constraints. Mves,
provide the different tasks placement on available targets. This such an operating system also provides a complete design

operation has to be performed on-line and must take into account framework which is independent of the technology and of the

the heterogeneousness of these different targets (softwaend parqware architecture, drastically reducing the time toketa
hardware). In addition, a validation phase is hecessary due to the '

complexity of these applications and systems. This validation can Embedded RTOS for SOCs has been of great interest
be done on a prototyping platform taking into account the entire o -
system component set. To do so, a general simulation model mustand h"_“s led to sevgral significant studies. In the Conte>§t of
be available to evaluate performance application on the chip. ~ reconfigurable architectures, a study of [4] has determined
The goal of this paper is to propose a general model of and classified the different services that operating system
a SyS}Fem-Ot:}-Chip dbalsed Tlﬁ):]atforde\/lhi_Ch inC|Ud_e|S dynamicallqu should provide to handle reconfigurability. Today, two eliéint
irr?w(;)?gnlwiunr;tign rgﬁa:ee%f anlsaprglci)ca?tioﬁ aensdse;m% ;’{'g;os‘i’ ditnge approaches have emerged. The first consists in utilizinga pr
a real simulation framework. The proposed model includes the eX|stgnt stapdard RTOS (RTAI [14]_’ RTLinux, VxWorks, ...)
entire system, that is, the applicative level, the middleware level @nd in adding functionnalities dedicated to the management
and the architectural level. The model notably describes the of the reconfigurable resources [10], [9]. The second is to
interactions between the operating system and the reconfiguré® develop a specific RTOS from scratch by implementing the

modules and defines specific services according to the originality necessary functionalities devoted to the management of the
of the considered platform. A UML formalism has been chosen .
reconfigurable part [19], [16], [17].

for the model description, in order to take advantage of the objet

oriented framework. To study the interaction between operating system and SOC

l. INTRODUCTION architecture, and particulary with dynamically reconfegjole

modules, we propose to develop a platform model. The goal of

_ Nowadays, algorithmic complexity of applications tends s naper is to present our RSoC (Reconfigurable System on
increase in many domains such as signal, image processingfo) pjatform model, that includes the whole set of sofevar
control. In paraIIeI., embedded appllcgtlons require alﬁ(gmt. and hardware elements and their interactions. This article
power of calculation in order to satisfy demanding real timg.; aims at identifying the different software and hardsvar
constraints. This leads designers to opt f_or hardware mm components operating in these architectures. Specifidesly
tures composed of heterogeneous, optimized computatit up,,hose is to define the role and the organization of the

operating in parallel. Hardware components in SOC (Systefijqqieware layer. The main goal is to obtain formal criteria
on ,Ch'p) may |mpI'ement programmable computatlon Unitg, develop an operating system deeply adapted to this type of
dedicated or reconfigurable units, or even dedicated ddBipa, cpitecture. This allows the software and hardware design

In particular, reconfigurable units (e.9 FPGA, DART [3])ihat are interested in RSoC to work on the same basis and to
denoted here as Dynamically Reconfigurable Acceleralqgy, s on the specificity of reconfigurable systems. The aonce
(DRA), allow an architecture to adapt to various incomings gelivering the most generic model as possible, suppprtin

tasks or to various computation charge due to data depgiyige varieties of platforms, has led us to adopt a formalism
dencies treatments. ThBlatform-Based Desigrmethodol- pocad on UML.

ogy [6] may thus be fully respected, adding flexibility to

an architecture towards modifications of its functionality Section Il of this article introduces the context of apica
even the environment (changing standards, mission statsmedeployments on a RSoC. In the section Il the global model is
etc.). This flexibility is provided by the dynamic allocatiof proposed and the different levels of representation areetkfi
different and dedicated processing operators within théADRSome OS services definitions for RSoC management are also
On the other hand, such heterogeneous architectures need ésted in this section. Finally, section IV concludes andvds
more complex management and control. the perspectives of the current work.

Il. MAPPING APPLICATIONS ONRSOC o Coarse-grain areas for multimedia oriented applications

. . . . mainly implemented with arithmetic computations (PACT
In this section the global methodology is presented. This XPP [15] architecture).

methodology aims at deploying an application on a RSoC
architecture. Flrst_, we introduce the hardware f:_onte_xl- (8l urable data-paths (DART architecture [3] for example).
A). 8lI-B deals with the hardware/software partitionnin§ o

an application. How such a partitionned application can beThe support of dynamlc_ allocation of mult|pI(_a dedicated
mapped on a RSoC is then presented (§11-C) processes on these reconfigurable accelerators is the aommo

characteristic of the considered architectures. In thigeod,
dynamic allocation means that the starting time of processe
is unknown at compile time. Generally, the ratio between the
It is assumed that SoC architectures are heterogeneous. &kecution time and the configuration time of these processes
wide variety of hardware elements of such architectures as important criteria. It is assumed that an order of magmitu

« Mixed solutions associating FPGA areas and reconfig-

A. Architectural description of the platform

depicted figure 1. leads to efficient dynamic allocations. Readers could refer
The hardware context of such RSoC can be summarized[aswhere the notion ofemanencds presented and defined
follows: for various reconfigurable platforms.

« One or several general purpose processors (GPP). c%peAppIication partitioning

processor is dedicated to executing the main part of the))]) o
operating system. Due to their complexity (multimedia, telecommunication,

« One or several specialized processors (RISC, DSP, micR&fworking), applications are decomposed into multiple- el
controller). ment_ary ta_Lsks. Thesapplicative taskgepresent some com-

. Hardware accelerators or processing IPs such as filtgPgtation without any knowledge about the effective exeauti
convolvers, VITERBI decoders, etc. targets.

« Memory resources and input / output interfaces.

« One or several DRAs as described later.

o A set of commuqicqtion resources (buss_e;, hierarchical Application
busses, communication network). A specific network for
the transport of configuration information may also be
necessary for parallelization between data and configura- ‘

tion transfers. . L
multi target compilation

It is also assumed that the processing operators havedtiffer
execution models (sequential, parallel, pipeline, datasfetc).

\

UP |----| pP DSP pCont. Synthesis
T~ ~ ~ _target 1 target 2 target:
I JL I I sl
Interconnection network ‘ “
oo hard/soft
j i j i j i - - - partitioning
MEM Dedicated
1/0
acceleratorn
Architecture +
exploration
- -~ HwW
ARD1 (FPGA) Sw

configuration

ARD2 (Data-Path)
or

Fig. 1. Example of a highly heterogeneous reconfigurable Satopm

SW Task graph
The main difference between a classical SoC architecture
and a reconfigurable SoC platform resides on the existence i§f 2 The RSoC model supports different implementation schefoe
fi bl R nt evolutions of both r ntideir applicative tasks (synthesis of hardware modules, hatdgsofitioning and
reconfigurable areas. Recent evolutions of both reco todeel @multiple software compilations).
technologies and platform-based design concepts havesshsu

the availability of such synthesizable reconfigurable B¥sic |, order to take into account the heterogeneous structure

structures and grain of these IPs depend on the application {he target architecture we propose a general model based
« Fine-grain reconfigurable areas (FPGA-like) for contrain the implementation of each applicative tasks into saftwa

and bit oriented processes (ATMEL FPSLIC structureend/or hardware tasks (see figure 2). A software task is a

[1] for example). portion of code (instructions) that can be executed by one

of the RSoC processors. This processor may be one of the of compiled codes according to the different processor
physically available processing nodes (GPP, RISC, DSP, etc targets. By doing so, heterogeneous migration of tasks is
or a soft-processor core previously configured within a DRA. feasible.
A hardware task is a dedicated hardwired process directly
supported by a physical IP or a hardware module configured
within a DRA. A graphical model based on UML has been chosen for a
sake of clarity in the description of all the elements in the
RSoC architecture: the applicative tasks, the hardware and
The global software architecture is organized around tReftware elements and the interactions between them. The
operating system. One of the OS sevices is responsible §arresponding UML class diagram is depicted in figure 4.
mapping (i.e. allocating and placing) the different softea The presented model guaranties the independance betweeen th
and hardware tasks onto the available targets. Followieg thpplication specification and its hardware implementafidre
previous architectural and software descriptions, déffittasks model is divided into three layers.
mapping levels are defined on the platform. In the example o
illustrated in figure 3, a minimal RSoC platform composed d}- The application layer
a GPP associated with a DRA is under concerned. The application layer describes the applicative tagks- (
plicativeTaskclass). In this layer, software designers represent
applications without taking into considerations the haaoav
cwaewss implementation. This representation implies that the gtesi
has previously broken up the application into tasks andls ab
- to describe each one of them along with their dependences
(Hardware task) (cf. figure 2). This problem is out of the scope of this paper
...... and we assume in the following that this decomposition has
already been performed [5], [7].
An applicative task is specified through the typical pa-
twawe rameters used in the real-time context: identificationontsi,
period, termination time, ready-time and whether the task i
preemptible or not.
Control and data dependencies are also specified in this
Fig. 3. The different mapping levels depend on the differemicessing layer. In particular, tasks can produce and consume data to
entities share information and to store internal temporary vargble
well. These tasks properties are explicitely describechis t
The different mapping levels are decomposed as followsimodel pataAccesslass). The amount of memory needed by
« The physical level (level 0) corresponds to the physicalch task is indicated in thHeata class.
architecture of the RSoC. The set of targets containsin this layer the designer may also specify the Quality of
the DRA, the general purpose processor, a communic@ervices QoSclass) associated with each tasks. QoS can be
tion channel and memories. This level is composed difined as the purpose of matching some constraints (real-
resources (memory, bandwidth, reconfigurable and CRithe, bandwidth or power consumption) and must be adapted
time) that can be allocated to the applicative tasks. by the designer to a particular application. Obviously,sthe
« The level 1 corresponds to the hardware tasks utilizing tisenstraints can be respected only if lower layers elemaris c
physical level resources. In particular, all of the hardwaisupport particular execution schemes. QoS specificationtis
objects to be configured on the DRA constitute tasks bef the scope of this paper.
longing to this level (dedicated synthesized IPs, proaesso .
cores, filters). Configuring a hardware task within thE: The architecture layer
DRA requires a specific download of configuration data The architecture layer contains all the hardware objects
(the H arrow in figure 3). The model features multiplehat are physically implemented in the platform (level O of
configurations for a unique hardware task offering thiigure 3). It includes the processing targets, memory and
task different forms and performances. communication resources.
o The level 2 contains the set of applicative software tasks1) Processing TargetsThey (ProcessingTargetlass) are
to deploy on the GPP or on the processing cores withifivided into two parts, the processor-like elemer8sffware-
the DRA. Allocating a task on such processor is considargetclass) and the hardware targetia(dwareTargetlass).
ered as a context switching (the S arrow). When the targettese two parts may be defined by different supply voltages,
is a processor within the DRA, an additional hardwarpower consumptions and frequencies. The representation of
configuration step may be necessary (it correponds tttese parameters allows to take into account techniqués suc
the configuration of the processor core itself). As for thas the dynamic scaling of the supply volta@g/fiamic Voltage
hardware tasks, a software task may come in a variebgaling.

IIl. GENERAL MODEL

C. Application mapping on the RSoC

*SucceededBy
ApplictiveTask
Data DataAccess QoS
-Size:int 1x -Pipeline:boolean #d.mt‘ N -RealTime:float
i N ~Priority:int AverPowarfioat
* Transfer (read / write) i * wverPower:float
L% | 4 AccessCost()float () Period:int 27| Jnstantpower-float
+ReadData():void -Deadlinerint A i _”' "
- +WriteData():void ReadyTime:int ppQualiy:fioat
N Type:int * +ComputeQoS():void N "
1 -Preemption:boolean Application layer
ControleExecutionOf
Transport
st SoftwareTask * Execute VirtualMachine HardwareTask Middleware layer
ore
Loadl : Load:float 1> -ResourceUsage:int
N +orm:float(]
+AllocLoad():void
+FreeLoad():void * +ChangeForm():void oS
-AnArchi:RSoC
~TheTasks:ApplictiveTask
Execut +Schedule():void
ecute Task +CompactFormServices():void
Protocol "
Configuratonontex Satein Aercomcsenicasgoi
" ~Priority:int N
- ~CfgTime:fioat . 4nlerM\: tonboolean OSTask i +PowerEstimationServices():void
+Send():void ~CigSizetint orafion: - +PerfEstimationServices():void
+Receive():void -Localisation:void 1o | ‘ubyciosin Joolean C of [+Q rvices():void
1. +SaveContext():void _ -BreakPoints:int[] hoxServices(void i:;i?::g:t:ﬁ‘:void
Support HRestoreConengrod atribute_dint Execute Execute N +StopTaskService() void
+ContinueTaskService():void
+OtherServices():void
Execute }
Hardware layer
SoftwareTarget ProcessingTarget HardwareTarget
-Load:float L -vdd:float]] -GlobalForm:float]
~Frequency:float]
+AllocLoad():void _Pov':er ﬂo;tl] 0 +AllocForm():void
+FreeLoad():void Preemption-boolean +FreeForm():void
Connect
Include * 1.*
MemoryTarget Target EreauteTaskeo
xecuteTasksOn
-Hierarchy:int
X InterconnectTarget
-Sizesint - Include
Connect | -Sizezint +Alloc():void
+AllocMemory():void +Free():void
+FreeMemory():void +AllocBandwidth():void
+FreeBandwidth():void Connect
1.*
1.
RSoC
Include
Include

Fig. 4. General model class diagram

a) SoftwareTarget classn the current model, the RSoCavailable operators. The proposed model allows to consider
architecture features a main processor at least. The other @ll forms of granularity and furnishes a generic overview
cessors (auxiliary ones) do not play a particular role ingla¢- of reconfigurable areas. Each DRA may implement several
form management. The main processor is the main processivegdware tasks according to its available resources. THe de
target of the RSoC operating system and is physically linkéchted modules are optimized for a given functionality, énav
to all elements in the platform. It also supports the executi access to communication channels within the chip but cannot
of software tasks. The auxiliary processors group contaihe reconfigured. Examples of dedicated modules are typicall
all other software processing targets (for example germral predefined IP cores.
dedicated architectures such as DSPS, minO'Controws, 2) Memory resourcesThe architecture |ayer model also
These targets also support sofware tasks and may sometig@aggs into account the memory organizatidieforyTarget
require a micro-kernel for multitasking. class). Notably, memory hierarchy (caches) constitutesya k

b) HardwareTarget classThe hardware processing tarchallenge in RSoCs [12]. Several studies are currently nrade
gets are divided into two groups: the DRA and the dedicatedder to handle these aspects and should lead to a sigmvicati
modules. A DRA consists in a dynamically reconfigurablégnprovement of the corresponding part in the model, in a near
area, the grain of which corresponds to the structure of thgure.

3) Communication resourcedn the architecture layer, thetask with the communication medium. Finally, the control
role of communication resources is to define the hardwargerface helps to communicate with the operating system
support for transactions between the different elementisinvi which manages the tasks and their scheduling.
the platform. A first type of interconnect deals with the In addition, some particular hardware tasks can execute sof
communication between the main processor, the dedicatedre tasks. Examples are processor cores configured whidin t
modules and the DRA. This type of interconnect is static af@RA (Altera NIOS, Xilinx MicroBlaze...) or programmable
optimized during the design phase. The second type concedasa-paths. They are denoted as virtual machivesuglMa-
interconnections between hardware modules within a DR&hine class).

It constitutes a real challenge and one of the most deli-

cate aspects of the model. Indeed, the interconnections us- —
structurally and functionally adapt according to the dffet config [=<—| Config
configurations and consequently guarantee flexibilitys Kay Mooty]
point has motivated several studies on the implementatfon o -
NoC (Networks on Chip) for Reconfigurable SoCs [8], [11],
that provide flexibility and quality of services.

C. Middleware layer
Micro-kernel

The middleware layer contains all the objects which are
scheduled by the OS i.e. all the tasks and their charadosrist
related to the hardware. At this level, the interactionsveen
an application and an implementation on a reconfigurable
platform are specified. This level also describes the differ o .)
configuration tasks, the communication protocols that doul AS Presented in figure 6, a virtual machine has a code
be used and the OS which manages all these objects. interface enak_)lmg the OS to_ load a ta;k, a commur_ucatlon

1) Tasks and their execution supportEasks Taskclass) and a control interface. The virtual machine, aF least, @iost
are the main elements of the middleware layer. In this lev@ Micro-kernel devoted to manage the machine, to start the
a task may be considered in three different wa@oftware- ex'ecutlon of the loaded 'tasks and to indicate the!r states Th
Task class, HardwareTaskclass) and a third type to deﬁnemlcro-kernel_ may be straightforward (a state machine falbm
the OS tasks @STaskclass). Software tasksSéftwareTask virtual machines) or complex (a local RTOS layer for _soﬂlwar _
class) run on RSoC processooftwareTargetlass). They processors). In the se_cond case, this local kernel is also in
are classical tasks scheduled by the OS on these targSf@rge of the scheduling and the management of the local
Hardware tasksHardwareTaskclass) can either run on thel®SOUrCes. _ _
DRA (HardwareTargetlass) or on the dedicated modules that Moreover, each hardware or software tasks require a config-
are present in the platform. These tasks are mainly efficigff2tion context stepQonfigurationContextlass) in order to
implementations of applicative tasks. They utilize some r@€ €xecuted on a target. When a task executes on a processor,

sources ResourceUsagelass) and occupy areas within théhis context is similar to the _context of a classical sofevask
DRA (Form class). (program counter, stack pointer...). In the case of a harelwa

task, the context can be more complex and contains the whole

Config. load
(processes)

To data communicatior
CPU |, = Data network

Control/Sync./Status

Wl

Fig. 6. Overview of a virtual machine

configuration sequence of the hardware target (e.g. a FPGA
save/restore bitstream).
context (optional) 2) Communication protocolsThe middleware layer ex-
hibits the link between the data transfers and the hardware
target Protocol class). The data are transferred via memory
Data To data communicatiol accesses which are managed by the protocol.
Task network 3) OS: The operating system (OS) with its set of services
belongs to this layer. Each service is represented by acparti
ular system task@STaskclass). The OS services related to
o Control/Sync./Status the management of the platform have been identified. Some
of them are slightly modified due to the presence of DRA.

Context

Hardware

LU

Others are exclusively dedicated to the management of the
Fig. 5. Hardware task and its interfaces reconfigurable areas.
In the following, we outline the main services of an OS for
A hardware task, as shown in figure 5, is able to coniRSoCs:
municate with other RSoC resources via three interfaces: th a) Tasks selectionThe proposed model permits to spec-
context interface allows to save and restore the state of ffe the execution support (hardware or software) of some
hardware task, the data interface interconnects the haedwapplicative tasks. The OS scheduler dynamically selects an

execution support according to the RSoC operating state)(CR4] O. Diessel and G. Wigley. Opportunities for Operatings@ms

charge, timing constraints, amount of free resources on&,DR ~ Research in Reconfigurable Computing. Technical Report AGRC
018, Advance Computing Research Center, School of Computér an

etc). Information Science, Univ. of South Australia, August 1999.
b) Tasks migration:A task may be authorized to migrate [5] H. Gomaa. Software Design Methods for Concurrent and Real-Time
from a software or a hardware target to an equivalent target SystemsAddison Wesley, 1993.

(IntraMi ration) or to a target of a different t elr(ter— 6] Kurt Keqtzer, S_ha_rad Malik, A. Richard Newton_, Jan M. Iagp, a_md
g g yp A. Sangiovanni-Vincentelli. System-Level Design: Orthoglization

Migration). In this case, it is assumed that preemption of of Concerns and Platform-Based DesigiEEE Trans. on Computer-
software and hardware tasks is possible. Sofware preemptio Aided Design of Intergrated Circuits and Systerh9(12):1523-1543,

. . . . December 2000.
is straightforward. However, preemption of hardware tasks 77\ "kopetz and H. Obermaisser. Temporal composabilBomputing

volves defining behavioral breakpoints (with the correston and Control Engineering Journabages 156-162, August 2002.
context storage) [9] [8] T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Veest, S. Ver-

. s . nalde, and R. Lauwereins. Networks on Chip as Hardware Coersn
c) Tasks placement and configuratioff: the choice of of an OS for Reconfigurable Systems. Hield Programmable Logic

the OS has led to the placement of a task on a DRA, a specific and Application: 13th International Conference, FPpages 595-605,
service is invoked. For example, if a software task has to be September 2003.

. . . . V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lareives.
executed on a virtual machine, then the configuration phaé Designing an Operating System for a Heterogeneous Receafiigu

of this machine may be avoided if it is already present on the soC. InReconfigurable Architectures Workshdyice, France, April
DRA. 2003.

. ; [10] V. Nollet, J-Y. Mignolet, T.A. Bartic, D. Verkest, S. Yvealde, and
d) Resource managemen#s for a classical processor, R. Lauwereins. Hierarchical Run-Time Reconfiguration Mauhdpy

an OS for a RSoC must maintain a resources occupation table. an Operating System for Reconfigurable Systems. International
Resources are dynamic in a RSoC due to the fact that they Conference on Engineering of Reconfigurable Systems aratithigs

. . : : (ERSA) pages 81-87, Las Vegas, USA, June 2003.
evolve according to the performed reconfigurations. Addai] Vicent Nollet, Théodore Marescaux, and Diederik VatkeOperating-

details have to be foreseen on the amount, the shape and the system Controlled Network on Chip. Design Automation Conference,
location of the occupied DRA resources. DAC, pages 256-259, June 2004.

fati ; ; PP o1 [12] I. Ouaiss.Hierarchical Memory Synthesis in Reconfigurable Computers
e) Tasks communicationithis major service is essential. PhD thesis, University of Cincinnati / OhioLINK, 2002,

Two different types of communications must be handlegis] open Core Protocol International Partnership. Ocp-ip
global RSoC communications through the static interconne[c] http!é/WMA;/OCpi p.org/.)

; ; At -:[14] RTAL http://ww.rtai.org/.

tion network and local reconﬂg_urable cqmmu_nlcanons waithi 15] H. Schueler. Smart media processing with XPP, white pa-
the DRAs. Indeed, the dynamic reconfiguration of operators™ per. http: //ww. pact cor p. con xneu/ px_SMeXPP. ht m ,
within the DRA implies both the utilization of a flexible April 2003.

; ; ; 6] C. Steiger, H. Walder, and M. Platzner. Operating Systéor Recon-
interconnect and the presence of dedicated mterfaceseJ\/I&?‘ figurable Embedded Platforms: Online Scheduling of Real-timsks.

over, some of these interfaces are already standardizedlland |EEE Transaction on Computer§3(11):1392-1407, November 2004.
the communication mechanisms are rigourously specified [i7] M. Ullmann, M. Hilbne, B. Grimm, and J. Becker. On-Demand FPGA

Run-Time System for Dynamical Reconfiguration with AdaptiveoR-
several protocols (c.f. VCI [18], OCP [13], etc). ties. InField Programmable Logic and Application: 14th Internatad

IV. CONCLUSION Conference, FPLpages 454-463. Springer-Verlag Heidelberg, August
’ 2004.

This article proposes a general system-level model f{i8] VSIA. http://ww.vsia. org/.
reconfigurable SoCs (RSoCs). This layered model consgitute®] H:- Walder and M. Platzner. Reconfigurable Hardware @fieg Sys-
. . . tems: From Design Concepts to RealizationsPinceedings of the 3rd
a first approach of formalization of a reconfigurable embedde |ternational Conference on Engineering of Reconfigurdjetems and
platform and allows the software developers to deploy appli Architectures (ERSApages 284-287. CSREA Press, June 2003.
cations under a common framework. Software and hardware
components within a RSoC have been modelized and specific
services have been identified. Moreover, interactions &etw
components have also been formalized.
The perspective of the work is to study and develop an
original real-time operating system, based on the proposed
model, and to implement specific applications on the desdrib
platform.

REFERENCES

[1] ATMEL. FPSLIC (AVR with FPGA).
http://ww. at nel . com product s/ FPSLI C/ .

[2] Pascal Benoit, Gilles Sassatelli, Lionel Torres, Didiemigny, Michel
Robert, and Gaston Cambon. Metrics for reconfigurable arctuites
characterization: Remanence and scalability. SWMOS’'03: Systems,
Architecture, Modeling and Simulatipamos, Gréece, july 2003.

[3] R. David, D. Chillet, S. Pillement, and O. Sentieys. Daktdynamically
reconfigurable architecture dealing with next generat@communica-
tions constraints9th IEEE Reconfigurable Architecture Workshop RAW
April 2002.

