
System-Level Modelling for Reconfigurable SoCs
I. Benkermi∗, A. Benkhelifa†, D. Chillet∗, S. Pillement∗, J.C. Prévotet†, F. Verdier†

∗ENSSAT – Université de Rennes I,
IRISA, 6, rue de Kerampont - 22300 Lannion - France
†ETIS – UMR 8051 – Université de Cergy-Pontoise,

ENSEA, 6, Avenue du Ponceau - 95014 Cergy-Pontoise - France

Abstract— The integration of dynamically reconfigurable mod-
ules into systems-on-chip ensures a certain degree of flexibility. In
fact, it allows systems-on-chip to adapt to variable computation
loads, due to the beginning of new tasks or to data dependent
processings, for example. In order to get the most advantages
of these reconfigurable modules, the operating system must
provide the different tasks placement on available targets. This
operation has to be performed on-line and must take into account
the heterogeneousness of these different targets (softwareand
hardware). In addition, a validation phase is necessary due to the
complexity of these applications and systems. This validation can
be done on a prototyping platform taking into account the entire
system component set. To do so, a general simulation model must
be available to evaluate performance application on the chip.

The goal of this paper is to propose a general model of
a system-on-chip based platform which includes dynamically
reconfigurable modules. This model is essential prior to the
implementation phase of an application and aims at providing
a real simulation framework. The proposed model includes the
entire system, that is, the applicative level, the middleware level
and the architectural level. The model notably describes the
interactions between the operating system and the reconfigurable
modules and defines specific services according to the originality
of the considered platform. A UML formalism has been chosen
for the model description, in order to take advantage of the object
oriented framework.

I. I NTRODUCTION

Nowadays, algorithmic complexity of applications tends to
increase in many domains such as signal, image processing or
control. In parallel, embedded applications require a significant
power of calculation in order to satisfy demanding real time
constraints. This leads designers to opt for hardware architec-
tures composed of heterogeneous, optimized computation units
operating in parallel. Hardware components in SOC (System
on Chip) may implement programmable computation units,
dedicated or reconfigurable units, or even dedicated datapaths.

In particular, reconfigurable units (e.g FPGA, DART [3]),
denoted here as Dynamically Reconfigurable Accelerators
(DRA), allow an architecture to adapt to various incoming
tasks or to various computation charge due to data depen-
dencies treatments. ThePlatform-Based Designmethodol-
ogy [6] may thus be fully respected, adding flexibility to
an architecture towards modifications of its functionalityor
even the environment (changing standards, mission statements,
etc.). This flexibility is provided by the dynamic allocation of
different and dedicated processing operators within the DRA.
On the other hand, such heterogeneous architectures need even
more complex management and control.

In this context, the utilization of an RTOS (Real Time
Operating System) is more and more required to furnish
services such as communications, memory management, task
scheduling and placement. These services have to be fulfilled
in real time according to the application constraints. Moreover,
such an operating system also provides a complete design
framework which is independent of the technology and of the
hardware architecture, drastically reducing the time to market.

Embedded RTOS for SOCs has been of great interest
and has led to several significant studies. In the context of
reconfigurable architectures, a study of [4] has determined
and classified the different services that operating systems
should provide to handle reconfigurability. Today, two different
approaches have emerged. The first consists in utilizing a pre-
existent standard RTOS (RTAI [14], RTLinux, VxWorks, . . .)
and in adding functionnalities dedicated to the management
of the reconfigurable resources [10], [9]. The second is to
develop a specific RTOS from scratch by implementing the
necessary functionalities devoted to the management of the
reconfigurable part [19], [16], [17].

To study the interaction between operating system and SOC
architecture, and particulary with dynamically reconfigurable
modules, we propose to develop a platform model. The goal of
this paper is to present our RSoC (Reconfigurable System on
Chip) platform model, that includes the whole set of software
and hardware elements and their interactions. This article
first aims at identifying the different software and hardware
components operating in these architectures. Specifically, its
purpose is to define the role and the organization of the
middleware layer. The main goal is to obtain formal criteria
to develop an operating system deeply adapted to this type of
architecture. This allows the software and hardware designers
that are interested in RSoC to work on the same basis and to
focus on the specificity of reconfigurable systems. The concern
of delivering the most generic model as possible, supporting
a wide varieties of platforms, has led us to adopt a formalism
based on UML.

Section II of this article introduces the context of application
deployments on a RSoC. In the section III the global model is
proposed and the different levels of representation are defined.
Some OS services definitions for RSoC management are also
listed in this section. Finally, section IV concludes and draws
the perspectives of the current work.

II. M APPING APPLICATIONS ONRSOC

In this section the global methodology is presented. This
methodology aims at deploying an application on a RSoC
architecture. First, we introduce the hardware context (§II-
A). §II-B deals with the hardware/software partitionning of
an application. How such a partitionned application can be
mapped on a RSoC is then presented (§II-C).

A. Architectural description of the platform

It is assumed that SoC architectures are heterogeneous. The
wide variety of hardware elements of such architectures is
depicted figure 1.

The hardware context of such RSoC can be summarized as
follows:

• One or several general purpose processors (GPP). One
processor is dedicated to executing the main part of the
operating system.

• One or several specialized processors (RISC, DSP, micro-
controller).

• Hardware accelerators or processing IPs such as filters,
convolvers, VITERBI decoders, etc.

• Memory resources and input / output interfaces.
• One or several DRAs as described later.
• A set of communication resources (busses, hierarchical

busses, communication network). A specific network for
the transport of configuration information may also be
necessary for parallelization between data and configura-
tion transfers.

It is also assumed that the processing operators have different
execution models (sequential, parallel, pipeline, data-flow, etc).

I/O

DSP µCont.µP µP....

process
#1

process
#2

accelerator
MEM

ARD2 (Data−Path)ARD1 (FPGA)configuration

Interconnection network

Dedicated

Proc.
Core IP#1 IP#2

Fig. 1. Example of a highly heterogeneous reconfigurable SoC platform

The main difference between a classical SoC architecture
and a reconfigurable SoC platform resides on the existence of
reconfigurable areas. Recent evolutions of both reconfigurable
technologies and platform-based design concepts have ensured
the availability of such synthesizable reconfigurable IPs.Basic
structures and grain of these IPs depend on the application:

• Fine-grain reconfigurable areas (FPGA-like) for control
and bit oriented processes (ATMEL FPSLIC structures
[1] for example).

• Coarse-grain areas for multimedia oriented applications
mainly implemented with arithmetic computations (PACT
XPP [15] architecture).

• Mixed solutions associating FPGA areas and reconfig-
urable data-paths (DART architecture [3] for example).

The support of dynamic allocation of multiple dedicated
processes on these reconfigurable accelerators is the common
characteristic of the considered architectures. In this context,
dynamic allocation means that the starting time of processes
is unknown at compile time. Generally, the ratio between the
execution time and the configuration time of these processesis
an important criteria. It is assumed that an order of magnitude
leads to efficient dynamic allocations. Readers could referto
[2] where the notion ofremanenceis presented and defined
for various reconfigurable platforms.

B. Application partitioning

Due to their complexity (multimedia, telecommunication,
networking), applications are decomposed into multiple ele-
mentary tasks. Theseapplicative tasksrepresent some com-
putation without any knowledge about the effective execution
targets.

Application

target 2 target 3target 1
Synthesis

T1

T2 T3

T4

T5

HW
SW

IP

multi target compilation

hard/soft
partitioning

Task graph

Architecture
exploration

or

HW
SW

Fig. 2. The RSoC model supports different implementation schemes for
applicative tasks (synthesis of hardware modules, hard/soft partitioning and
multiple software compilations).

In order to take into account the heterogeneous structure
of the target architecture we propose a general model based
on the implementation of each applicative tasks into software
and/or hardware tasks (see figure 2). A software task is a
portion of code (instructions) that can be executed by one

of the RSoC processors. This processor may be one of the
physically available processing nodes (GPP, RISC, DSP, etc)
or a soft-processor core previously configured within a DRA.
A hardware task is a dedicated hardwired process directly
supported by a physical IP or a hardware module configured
within a DRA.

C. Application mapping on the RSoC

The global software architecture is organized around the
operating system. One of the OS sevices is responsible for
mapping (i.e. allocating and placing) the different software
and hardware tasks onto the available targets. Following the
previous architectural and software descriptions, different tasks
mapping levels are defined on the platform. In the example
illustrated in figure 3, a minimal RSoC platform composed of
a GPP associated with a DRA is under concerned.

H

processor

form 1
form 2

Task D
HW

Task E
HW

Task B
SW 1

Task C
SW 1 ou 2

Task A
Processor core

H
H

H

S S

Level 0
(Hardware)

Level 1
(Hardware task)

Level 2
(Software task)

S

memory

Dynamically Reconfigurable Accelerator

Fig. 3. The different mapping levels depend on the different processing
entities

The different mapping levels are decomposed as follows:

• The physical level (level 0) corresponds to the physical
architecture of the RSoC. The set of targets contains
the DRA, the general purpose processor, a communica-
tion channel and memories. This level is composed of
resources (memory, bandwidth, reconfigurable and CPU
time) that can be allocated to the applicative tasks.

• The level 1 corresponds to the hardware tasks utilizing the
physical level resources. In particular, all of the hardware
objects to be configured on the DRA constitute tasks be-
longing to this level (dedicated synthesized IPs, processor
cores, filters). Configuring a hardware task within the
DRA requires a specific download of configuration data
(the H arrow in figure 3). The model features multiple
configurations for a unique hardware task offering this
task different forms and performances.

• The level 2 contains the set of applicative software tasks
to deploy on the GPP or on the processing cores within
the DRA. Allocating a task on such processor is consid-
ered as a context switching (the S arrow). When the target
is a processor within the DRA, an additional hardware
configuration step may be necessary (it correponds to
the configuration of the processor core itself). As for the
hardware tasks, a software task may come in a variety

of compiled codes according to the different processor
targets. By doing so, heterogeneous migration of tasks is
feasible.

III. G ENERAL MODEL

A graphical model based on UML has been chosen for a
sake of clarity in the description of all the elements in the
RSoC architecture: the applicative tasks, the hardware and
software elements and the interactions between them. The
corresponding UML class diagram is depicted in figure 4.
The presented model guaranties the independance between the
application specification and its hardware implementation. The
model is divided into three layers.

A. The application layer

The application layer describes the applicative tasks (Ap-
plicativeTaskclass). In this layer, software designers represent
applications without taking into considerations the hardware
implementation. This representation implies that the designer
has previously broken up the application into tasks and is able
to describe each one of them along with their dependences
(cf. figure 2). This problem is out of the scope of this paper
and we assume in the following that this decomposition has
already been performed [5], [7].

An applicative task is specified through the typical pa-
rameters used in the real-time context: identification, priority,
period, termination time, ready-time and whether the task is
preemptible or not.

Control and data dependencies are also specified in this
layer. In particular, tasks can produce and consume data to
share information and to store internal temporary variables as
well. These tasks properties are explicitely described in this
model (DataAccessclass). The amount of memory needed by
each task is indicated in theData class.

In this layer the designer may also specify the Quality of
Services (QoSclass) associated with each tasks. QoS can be
defined as the purpose of matching some constraints (real-
time, bandwidth or power consumption) and must be adapted
by the designer to a particular application. Obviously, these
constraints can be respected only if lower layers elements can
support particular execution schemes. QoS specification isout
of the scope of this paper.

B. The architecture layer

The architecture layer contains all the hardware objects
that are physically implemented in the platform (level 0 of
figure 3). It includes the processing targets, memory and
communication resources.

1) Processing Targets:They (ProcessingTargetclass) are
divided into two parts, the processor-like elements (Software-
Targetclass) and the hardware targets (HardwareTargetclass).
These two parts may be defined by different supply voltages,
power consumptions and frequencies. The representation of
these parameters allows to take into account techniques such
as the dynamic scaling of the supply voltage (Dynamic Voltage
Scaling).

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

SoftwareTask

−LoadUsage:float

HardwareTask

−ResourceUsage:int

−Form:float[]

+ChangeForm():void

ApplictiveTask

−Id:int

−Priority:int

−Period:int

−Deadline:int

−ReadyTime:int

−Type:int

−Preemption:boolean

Data

−Size:int

DataAccess

−Pipeline:boolean

+AccessCost():float

+ReadData():void

+WriteData():void

*
*

QoS

−RealTime:float

−AverPower:float

−InstantPower:float

−AppQuality:float

+ComputeQoS():void

1..*

Task

−State:int

−Priority:int

−InterMigration:boolean

−IntraMigration:boolean

−NbCycles:int

−BreakPoints:int[]

−attribute_4:int

SoftwareTarget

−Load:float

+AllocLoad():void

+FreeLoad():void

*

*

Execute

HardwareTarget

−GlobalForm:float[]

+AllocForm():void

+FreeForm():void

*

Execute

ProcessingTarget

−Vdd:float[]

−Frequency:float[]

−Power:float[]

−Preemption:boolean

MemoryTarget

−Hierarchy:int

−Size:int

+AllocMemory():void

+FreeMemory():void

InterconnectTarget

−Size:int

+AllocBandwidth():void

+FreeBandwidth():void

RSoC

1..*

Include

1..*

Include

1..*

Include 1..*

Include

ConfigurationContext

−CfgTime:float

−CfgSize:int

−Localisation:void

+SaveContext():void

+RestoreContext():void

1..*

*

Target

+Alloc():void

+Free():void

OS

−AnArchi:RSoC

−TheTasks:ApplictiveTask

+Schedule():void

+CompactFormServices():void

+MemoryServices():void

+InterconnectServices():void

+PowerEstimationServices():void

+PerfEstimationServices():void

+QoSServices():void

+DVSServices():void

+StartTaskService():void

+StopTaskService():void

+ContinueTaskService():void

+OtherServices():void

*

ControleExecutionOf

ExecuteTasksOn

1..*

Support

*
*SucceededBy

1..*

Store

1..*

1..*

* Transfer (read / write)

*

Connect

*

Connect

Middleware layer

Application layer

Hardware layer

*

Connect

Protocol

+Send():void

+Receive():void

1..*

Transport

OSTask

+xxxServices():void

1..*

ComposedOf

*

Execute

VirtualMachine

−Load:float

+AllocLoad():void

+FreeLoad():void

*

* Execute

*

Execute

Fig. 4. General model class diagram

a) SoftwareTarget class:In the current model, the RSoC
architecture features a main processor at least. The other pro-
cessors (auxiliary ones) do not play a particular role in theplat-
form management. The main processor is the main processing
target of the RSoC operating system and is physically linked
to all elements in the platform. It also supports the execution
of software tasks. The auxiliary processors group contains
all other software processing targets (for example generalor
dedicated architectures such as DSPs, micro-controllers,etc.).
These targets also support sofware tasks and may sometimes
require a micro-kernel for multitasking.

b) HardwareTarget class:The hardware processing tar-
gets are divided into two groups: the DRA and the dedicated
modules. A DRA consists in a dynamically reconfigurable
area, the grain of which corresponds to the structure of the

available operators. The proposed model allows to consider
all forms of granularity and furnishes a generic overview
of reconfigurable areas. Each DRA may implement several
hardware tasks according to its available resources. The ded-
icated modules are optimized for a given functionality, have
access to communication channels within the chip but cannot
be reconfigured. Examples of dedicated modules are typically
predefined IP cores.

2) Memory resources:The architecture layer model also
takes into account the memory organization (MemoryTarget
class). Notably, memory hierarchy (caches) constitutes a key
challenge in RSoCs [12]. Several studies are currently madein
order to handle these aspects and should lead to a significative
improvement of the corresponding part in the model, in a near
future.

3) Communication resources:In the architecture layer, the
role of communication resources is to define the hardware
support for transactions between the different elements within
the platform. A first type of interconnect deals with the
communication between the main processor, the dedicated
modules and the DRA. This type of interconnect is static and
optimized during the design phase. The second type concerns
interconnections between hardware modules within a DRA.
It constitutes a real challenge and one of the most deli-
cate aspects of the model. Indeed, the interconnections must
structurally and functionally adapt according to the different
configurations and consequently guarantee flexibility. This key
point has motivated several studies on the implementation of
NoC (Networks on Chip) for Reconfigurable SoCs [8], [11],
that provide flexibility and quality of services.

C. Middleware layer

The middleware layer contains all the objects which are
scheduled by the OS i.e. all the tasks and their characteristics
related to the hardware. At this level, the interactions between
an application and an implementation on a reconfigurable
platform are specified. This level also describes the different
configuration tasks, the communication protocols that could
be used and the OS which manages all these objects.

1) Tasks and their execution supports:Tasks (Taskclass)
are the main elements of the middleware layer. In this level
a task may be considered in three different ways: (Software-
Task class,HardwareTaskclass) and a third type to define
the OS tasks (OSTaskclass). Software tasks (SoftwareTask
class) run on RSoC processors (SoftwareTargetclass). They
are classical tasks scheduled by the OS on these targets.
Hardware tasks (HardwareTaskclass) can either run on the
DRA (HardwareTargetclass) or on the dedicated modules that
are present in the platform. These tasks are mainly efficient
implementations of applicative tasks. They utilize some re-
sources (ResourceUsageclass) and occupy areas within the
DRA (Form class).

To data communication
network

context (optional)

Control/Sync./Status

Data

Context

OS

Task

Hardware

save/restore

Fig. 5. Hardware task and its interfaces

A hardware task, as shown in figure 5, is able to com-
municate with other RSoC resources via three interfaces: the
context interface allows to save and restore the state of the
hardware task, the data interface interconnects the hardware

task with the communication medium. Finally, the control
interface helps to communicate with the operating system
which manages the tasks and their scheduling.

In addition, some particular hardware tasks can execute soft-
ware tasks. Examples are processor cores configured within the
DRA (Altera NIOS, Xilinx MicroBlaze. . .) or programmable
data-paths. They are denoted as virtual machines (VirtualMa-
chineclass).

To data communication
network

Control/Sync./Status

config
memory
(code)

CPU

Micro−kernel OS

Data

Config. load
(processes)

Config
Data

Fig. 6. Overview of a virtual machine

As presented in figure 6, a virtual machine has a code
interface enabling the OS to load a task, a communication
and a control interface. The virtual machine, at least, contains
a micro-kernel devoted to manage the machine, to start the
execution of the loaded tasks and to indicate their state. This
micro-kernel may be straightforward (a state machine for small
virtual machines) or complex (a local RTOS layer for software
processors). In the second case, this local kernel is also in
charge of the scheduling and the management of the local
resources.

Moreover, each hardware or software tasks require a config-
uration context step (ConfigurationContextclass) in order to
be executed on a target. When a task executes on a processor,
this context is similar to the context of a classical software task
(program counter, stack pointer. . .). In the case of a hardware
task, the context can be more complex and contains the whole
configuration sequence of the hardware target (e.g. a FPGA
bitstream).

2) Communication protocols:The middleware layer ex-
hibits the link between the data transfers and the hardware
target (Protocol class). The data are transferred via memory
accesses which are managed by the protocol.

3) OS: The operating system (OS) with its set of services
belongs to this layer. Each service is represented by a partic-
ular system task (OSTaskclass). The OS services related to
the management of the platform have been identified. Some
of them are slightly modified due to the presence of DRA.
Others are exclusively dedicated to the management of the
reconfigurable areas.

In the following, we outline the main services of an OS for
RSoCs:

a) Tasks selection:The proposed model permits to spec-
ify the execution support (hardware or software) of some
applicative tasks. The OS scheduler dynamically selects an

execution support according to the RSoC operating state (CPU
charge, timing constraints, amount of free resources on a DRA,
etc).

b) Tasks migration:A task may be authorized to migrate
from a software or a hardware target to an equivalent target
(IntraMigration) or to a target of a different type (Inter-
Migration). In this case, it is assumed that preemption of
software and hardware tasks is possible. Sofware preemption
is straightforward. However, preemption of hardware tasksin-
volves defining behavioral breakpoints (with the corresponding
context storage) [9].

c) Tasks placement and configuration:If the choice of
the OS has led to the placement of a task on a DRA, a specific
service is invoked. For example, if a software task has to be
executed on a virtual machine, then the configuration phase
of this machine may be avoided if it is already present on the
DRA.

d) Resource management:As for a classical processor,
an OS for a RSoC must maintain a resources occupation table.
Resources are dynamic in a RSoC due to the fact that they
evolve according to the performed reconfigurations. Additional
details have to be foreseen on the amount, the shape and the
location of the occupied DRA resources.

e) Tasks communication:This major service is essential.
Two different types of communications must be handled:
global RSoC communications through the static interconnec-
tion network and local reconfigurable communications within
the DRAs. Indeed, the dynamic reconfiguration of operators
within the DRA implies both the utilization of a flexible
interconnect and the presence of dedicated interfaces. More-
over, some of these interfaces are already standardized andall
the communication mechanisms are rigourously specified in
several protocols (c.f. VCI [18], OCP [13], etc).

IV. CONCLUSION

This article proposes a general system-level model for
reconfigurable SoCs (RSoCs). This layered model constitutes
a first approach of formalization of a reconfigurable embedded
platform and allows the software developers to deploy appli-
cations under a common framework. Software and hardware
components within a RSoC have been modelized and specific
services have been identified. Moreover, interactions between
components have also been formalized.

The perspective of the work is to study and develop an
original real-time operating system, based on the proposed
model, and to implement specific applications on the described
platform.

REFERENCES

[1] ATMEL. FPSLIC (AVR with FPGA).
http://www.atmel.com/products/FPSLIC/.

[2] Pascal Benoit, Gilles Sassatelli, Lionel Torres, Didier Demigny, Michel
Robert, and Gaston Cambon. Metrics for reconfigurable architectures
characterization: Remanence and scalability. InSAMOS’03: Systems,
Architecture, Modeling and Simulation, Samos, Grèce, july 2003.

[3] R. David, D. Chillet, S. Pillement, and O. Sentieys. Dart :A dynamically
reconfigurable architecture dealing with next generation telecommunica-
tions constraints.9th IEEE Reconfigurable Architecture Workshop RAW,
April 2002.

[4] O. Diessel and G. Wigley. Opportunities for Operating Systems
Research in Reconfigurable Computing. Technical Report ACRC-99-
018, Advance Computing Research Center, School of Computer and
Information Science, Univ. of South Australia, August 1999.

[5] H. Gomaa. Software Design Methods for Concurrent and Real-Time
Systems. Addison Wesley, 1993.

[6] Kurt Keutzer, Sharad Malik, A. Richard Newton, Jan M. Rabaey, and
A. Sangiovanni-Vincentelli. System-Level Design: Orthogonalization
of Concerns and Platform-Based Design.IEEE Trans. on Computer-
Aided Design of Intergrated Circuits and Systems, 19(12):1523–1543,
December 2000.

[7] H. Kopetz and H. Obermaisser. Temporal composability.Computing
and Control Engineering Journal, pages 156–162, August 2002.

[8] T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Ver-
nalde, and R. Lauwereins. Networks on Chip as Hardware Components
of an OS for Reconfigurable Systems. InField Programmable Logic
and Application: 13th International Conference, FPL, pages 595–605,
September 2003.

[9] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins.
Designing an Operating System for a Heterogeneous Reconfigurable
SoC. In Reconfigurable Architectures Workshop, Nice, France, April
2003.

[10] V. Nollet, J-Y. Mignolet, T.A. Bartic, D. Verkest, S. Vernalde, and
R. Lauwereins. Hierarchical Run-Time Reconfiguration Managed by
an Operating System for Reconfigurable Systems. InInternational
Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA), pages 81–87, Las Vegas, USA, June 2003.

[11] Vicent Nollet, Théodore Marescaux, and Diederik Verkest. Operating-
System Controlled Network on Chip. InDesign Automation Conference,
DAC, pages 256–259, June 2004.

[12] I. Ouaiss.Hierarchical Memory Synthesis in Reconfigurable Computers.
PhD thesis, University of Cincinnati / OhioLINK, 2002.

[13] Open Core Protocol International Partnership. Ocp-ip.
http://www.ocpip.org/.

[14] RTAI. http://www.rtai.org/.
[15] H. Schueler. Smart media processing with XPP, white pa-

per. http://www.pactcorp.com/xneu/px_SMeXPP.html,
April 2003.

[16] C. Steiger, H. Walder, and M. Platzner. Operating Systems for Recon-
figurable Embedded Platforms: Online Scheduling of Real-time Tasks.
IEEE Transaction on Computers, 53(11):1392–1407, November 2004.

[17] M. Ullmann, M. Hübne, B. Grimm, and J. Becker. On-Demand FPGA
Run-Time System for Dynamical Reconfiguration with Adaptive Priori-
ties. In Field Programmable Logic and Application: 14th International
Conference, FPL, pages 454–463. Springer-Verlag Heidelberg, August
2004.

[18] VSIA. http://www.vsia.org/.
[19] H. Walder and M. Platzner. Reconfigurable Hardware Operating Sys-

tems: From Design Concepts to Realizations. InProceedings of the 3rd
International Conference on Engineering of ReconfigurableSystems and
Architectures (ERSA), pages 284–287. CSREA Press, June 2003.

